Inner Product Arguments (IPA) & Verkle Trees

Cryptographic primitives for Verkle tree state commitments and proofs

Inner Product Arguments (IPA) & Verkle Trees

IPA (Inner Product Arguments) provide the cryptographic foundation for Verkle trees, enabling efficient state proofs with smaller proof sizes than Merkle Patricia Trees.

Overview

Verkle trees with IPA provide:

  • Smaller Proofs: ~150 bytes vs ~1 KB for Merkle proofs
  • Efficient Updates: O(log n) complexity for state updates
  • Constant Verification: Fixed verification cost regardless of tree depth
  • State Commitment: Compact commitment to entire blockchain state

Technical Details

Bandersnatch Curve

The implementation uses the Bandersnatch curve:

ParameterValue
CurveBandersnatch (embedded in BLS12-381)
Field Size253 bits
Group Order~2^253
Security Level128 bits

IPA Parameters

ParameterValue
Vector Length256
Number of Rounds8 (log2(256))
Commitment Size32 bytes
Proof Size~544 bytes

Implementation

Setting Up IPA

package main

import (
    "fmt"
    "github.com/luxfi/crypto/ipa/ipa"
    "github.com/luxfi/crypto/ipa/banderwagon"
    "github.com/luxfi/crypto/ipa/bandersnatch/fr"
)

func main() {
    // Initialize IPA settings (generates SRS)
    config, err := ipa.NewIPASettings()
    if err != nil {
        panic(err)
    }

    fmt.Printf("SRS contains %d points\n", len(config.SRS))
    fmt.Printf("Number of rounds: %d\n", config.NumRounds())
}

Pedersen Commitments

Create commitments to polynomials:

func commitToPolynomial(config *ipa.IPAConfig, polynomial []fr.Element) banderwagon.Element {
    // Commit using precomputed MSM
    commitment := config.Commit(polynomial)

    fmt.Printf("Commitment: %x\n", commitment.Bytes())
    return commitment
}

// Create polynomial from data
func createPolynomial(data []byte) []fr.Element {
    poly := make([]fr.Element, 256)

    for i := 0; i < len(data) && i < 256; i++ {
        poly[i].SetUint64(uint64(data[i]))
    }

    return poly
}

Inner Product Computation

Compute inner products of vectors:

func computeInnerProduct(a, b []fr.Element) (fr.Element, error) {
    if len(a) != len(b) {
        return fr.Element{}, errors.New("vectors must have same length")
    }

    result, err := ipa.InnerProd(a, b)
    if err != nil {
        return fr.Element{}, err
    }

    fmt.Printf("Inner product: %s\n", result.String())
    return result, nil
}

Multi-Scalar Multiplication

Efficient MSM for group operations:

func multiScalarMult(points []banderwagon.Element, scalars []fr.Element) (banderwagon.Element, error) {
    result, err := ipa.MultiScalar(points, scalars)
    if err != nil {
        return banderwagon.Element{}, err
    }

    return result, nil
}

Verkle Tree Structure

Node Types

type VerkleNode interface {
    Commitment() banderwagon.Element
    Hash() []byte
}

type InternalNode struct {
    children   [256]VerkleNode
    commitment banderwagon.Element
}

type LeafNode struct {
    stem       [31]byte
    values     [256][]byte
    commitment banderwagon.Element
}

type EmptyNode struct{}

Tree Operations

type VerkleTree struct {
    root   VerkleNode
    config *ipa.IPAConfig
}

func NewVerkleTree(config *ipa.IPAConfig) *VerkleTree {
    return &VerkleTree{
        root:   &EmptyNode{},
        config: config,
    }
}

// Insert a key-value pair
func (t *VerkleTree) Insert(key []byte, value []byte) error {
    stem := key[:31]
    suffix := key[31]

    // Navigate to leaf, creating nodes as needed
    // Update commitments along the path

    return nil
}

// Get a value by key
func (t *VerkleTree) Get(key []byte) ([]byte, error) {
    stem := key[:31]
    suffix := key[31]

    // Navigate to leaf
    // Return value at suffix position

    return nil, nil
}

// Generate proof for a key
func (t *VerkleTree) Prove(key []byte) (*VerkleProof, error) {
    // Generate IPA proof for the path

    return nil, nil
}

IPA Proof Generation

Prover

type IPAProver struct {
    config *ipa.IPAConfig
}

func (p *IPAProver) CreateProof(
    commitment banderwagon.Element,
    polynomial []fr.Element,
    point fr.Element,
) (*IPAProof, error) {
    // Generate IPA proof that polynomial evaluates to
    // a specific value at the given point

    proof := &IPAProof{
        L: make([]banderwagon.Element, p.config.NumRounds()),
        R: make([]banderwagon.Element, p.config.NumRounds()),
    }

    // Prover algorithm:
    // 1. Split vectors in half
    // 2. Compute cross terms L and R
    // 3. Get challenge from verifier (Fiat-Shamir)
    // 4. Fold vectors
    // 5. Repeat for log(n) rounds

    return proof, nil
}

type IPAProof struct {
    L []banderwagon.Element // Left cross terms
    R []banderwagon.Element // Right cross terms
    A fr.Element            // Final scalar
}

Verifier

type IPAVerifier struct {
    config *ipa.IPAConfig
}

func (v *IPAVerifier) VerifyProof(
    commitment banderwagon.Element,
    point fr.Element,
    evaluation fr.Element,
    proof *IPAProof,
) bool {
    // Verify IPA proof

    // Verifier algorithm:
    // 1. Recompute challenges from L, R values
    // 2. Compute final commitment
    // 3. Check against claimed evaluation

    return true
}

Multi-Proof System

Efficient proofs for multiple keys:

type MultiProof struct {
    D          banderwagon.Element   // Commitment to quotient polynomial
    IPAProof   *IPAProof             // IPA proof for evaluation
    ClaimedValues []fr.Element       // Values at queried positions
}

func CreateMultiProof(
    config *ipa.IPAConfig,
    commitments []banderwagon.Element,
    polynomials [][]fr.Element,
    points []fr.Element,
) (*MultiProof, error) {
    // Create proof for multiple polynomial evaluations

    return nil, nil
}

func VerifyMultiProof(
    config *ipa.IPAConfig,
    commitments []banderwagon.Element,
    points []fr.Element,
    values []fr.Element,
    proof *MultiProof,
) bool {
    // Verify multi-proof

    return true
}

State Management

State Commitment

type StateCommitment struct {
    Root       banderwagon.Element
    BlockNum   uint64
    StateRoot  []byte
}

func (s *StateCommitment) Update(changes map[string][]byte) (*StateCommitment, error) {
    // Apply changes to state tree
    // Recompute affected commitments
    // Return new state commitment

    return nil, nil
}

Witness Generation

type ExecutionWitness struct {
    StateDiff    []KeyValuePair
    VerkleProof  *MultiProof
    ParentState  []byte
}

func GenerateWitness(
    tree *VerkleTree,
    accessedKeys [][]byte,
) (*ExecutionWitness, error) {
    // Generate witness for accessed state

    return nil, nil
}

Performance Benchmarks

OperationTimeNotes
Commit (256 values)2.5 msUsing precomputed MSM
IPA Prove15 ms8 rounds
IPA Verify8 msSingle proof
Multi-proof (100 keys)150 msBatched
Multi-verify (100 keys)50 msBatched

Proof Sizes

Proof TypeSize
Single IPA proof544 bytes
Verkle proof (depth 4)~600 bytes
Multi-proof (10 keys)~1.5 KB
Multi-proof (100 keys)~3 KB

Comparison with Merkle Trees

AspectMerkle PatriciaVerkle
Proof size~1-3 KB~150-600 bytes
Update complexityO(log n)O(log n)
VerificationO(log n) hashesO(1) pairings
Witness sizeLargeSmall
StatelessnessDifficultFeasible

Security Properties

Binding

// Commitments are computationally binding
// Cannot find two different polynomials with same commitment
func demonstrateBinding() {
    config, _ := ipa.NewIPASettings()

    poly1 := make([]fr.Element, 256)
    poly2 := make([]fr.Element, 256)

    poly1[0].SetUint64(1)
    poly2[0].SetUint64(2)

    c1 := config.Commit(poly1)
    c2 := config.Commit(poly2)

    // c1 != c2 with overwhelming probability
}

Soundness

// Cannot create valid proof for incorrect evaluation
// Soundness relies on discrete log hardness in Bandersnatch
func testSoundness(t *testing.T) {
    // Create proof for correct evaluation
    // Try to verify with wrong evaluation value
    // Must fail

    require.False(t, verifier.VerifyProof(commitment, point, wrongValue, proof))
}

Integration with Lux

Block State Root

type LuxBlock struct {
    Header       *BlockHeader
    Transactions []*Transaction
    VerkleRoot   banderwagon.Element
}

func (b *LuxBlock) ComputeStateRoot(tree *VerkleTree) {
    b.VerkleRoot = tree.root.Commitment()
}

Stateless Validation

type StatelessValidator struct {
    config *ipa.IPAConfig
}

func (v *StatelessValidator) ValidateBlock(
    block *LuxBlock,
    witness *ExecutionWitness,
) error {
    // Verify witness against parent state
    // Execute transactions using witness data
    // Verify resulting state matches block state root

    return nil
}

Testing

func TestIPACommitment(t *testing.T) {
    config, err := ipa.NewIPASettings()
    require.NoError(t, err)

    // Create polynomial
    poly := make([]fr.Element, 256)
    for i := 0; i < 256; i++ {
        poly[i].SetUint64(uint64(i))
    }

    // Commit
    commitment := config.Commit(poly)
    require.False(t, commitment.IsIdentity())

    // Same polynomial should give same commitment
    commitment2 := config.Commit(poly)
    require.True(t, commitment.Equal(&commitment2))

    // Different polynomial should give different commitment
    poly[0].SetUint64(999)
    commitment3 := config.Commit(poly)
    require.False(t, commitment.Equal(&commitment3))
}

References